Veranstaltungen
Veranstaltungen der Fakultät für Mathematik
Die Pythagoraszahl von Q(X), als obsgua
Termin
07.11.2019, 16:15 Uhr -
Veranstaltungsort
M/E23
Abstract
The Pythagoras number of a field is the smallest number p such that every
positive definite element in the field is a sum of p squares. It is an
open problem whether the Pythagoras number p(K(X)) of a rational function
field K(X) can be bounded in terms of p(K), the Pythagoras number of the
base field.
For the case when K is a number field, Pourchet proved in 1971 that
p(K(X)) is at most 5.
This bound is also sharp for example if K is the field of rational numbers
Q, because X^2+7 is a sum of 5 but not of 4 squares in Q(X). Based on a
detailed investigation of Pourchet's proof by my PhD student M. Zaninelli
I will give an overview on the ingredients of this proof and point out
some possible extensions.
Vortragende(r)
Karim Becher
Herkunft der/des Vortragenden
Antwerpen