Veranstaltungen 

Veranstaltungen der Fakultät für Mathematik

Analysis of an Eulerian finite element method for a fluid problem in a deforming volume, als mathkol ans

Termin

23.07.2024, 14.15 Uhr -

Veranstaltungsort
Mathematikgebäude, Raum M1011
Abstract
We address an error analysis of an Eulerian finite element method employed to solve a linearized Navier-Stokes problem posed in a time-dependent domain. In this study, we assume the known evolution of the domain, independent of the solution to the problem at hand. The numerical method under consideration combines a standard BDF-type time-stepping procedure with a geometrically unfitted finite element discretization technique. Additionally, we employ Nitsche's method to enforce the boundary conditions.
The main focus of this presentation is a convergence analysis of the method for various inf-sup stable velocity--pressure elements.
The analysis provides an optimal order convergence estimate in the energy norm for the velocity component and a scaled $L^2(H^1)$-type norm for the pressure component.
Vortragende(r)
Prof. Maxim Olshanskii
Herkunft der/des Vortragenden
University of Houston (USA)