Veranstaltungen
Veranstaltungen der Fakultät für Mathematik
Propagation of smallness and control for heat equations, als mathkol osanadyn
Termin
17.03.2020, 14.15 - 15.15
Veranstaltungsort
Seminarraum M 511
Abstract
In this note we investigate propagation of smallness properties for solutionsto heat equations. We consider spectral projector estimates for the Laplaceoperator with Dirichlet or Neumann boundary conditions on a Riemanian manifoldwith or without boundary. We show that using the new approach for thepropagation of smallness from Logunov-Malinnikova [7, 6, 8] allows to extendthe spectral projector type estimates from Jerison-Lebeau [3] from localisationon open set to localisation on arbitrary sets of non zero Lebesgue measure; wecan actually go beyond and consider sets of non vanishing d -- δ(δ > 0 small enough) Hausdorff measure. We show that these new spectralprojector estimates allow to extend the Logunov-Malinnikova's propagation ofsmallness results to solutions to heat equations. Finally we apply theseresults to the null controlability of heat equations with controls localised onsets of positive Lebesgue measure. A main novelty here with respect to previousresults is that we can drop the constant coefficient assumptions (see [1, 2])of the Laplace operator (or analyticity assumption, see [4]) and deal withLipschitz coefficients. Another important novelty is that we get the first (nonone dimensional) exact controlability results with controls supported on zeromeasure sets. (Joint work with N. Burq)
Hinweis
Gegebenenfalls werden noch kurzfristig änderungen auf der Internetseite des Seminar bekanntgegeben.
Vortragende(r)
Ivan Moyano
Herkunft der/des Vortragenden
Université de Nice Sophia-Antipolis
Weiterführende Informationen
Weiterführende Informationen finden Sie HIER. Achtung hierbei kann es sich um eine externe Verlinkung handeln. Trotz sorgfältiger Prüfung übernimmt die Fakultät keinerlei Verantwortung für externe Inhalte!