Veranstaltungen 

Veranstaltungen der Fakultät für Mathematik

Subnormale Lösungen der vierten Painlevéschen Differentialgleichung, als osanadyn

Termin

14.02.2017, 14.15 - 15.15

Veranstaltungsort
Raum 511
Abstract
Die Lösungen der vierten Painlevéschen Differentialgleichung sind entweder rationale Funktionen oder in der komplexen Ebene transzendente meromorphe Funktionen endlicher Ordnung. Betrachtet werden die Lösungen deren Zählfunktion n(r,w)=O(r^2) genügt, die sogenannten subnormalen Lösungen. Mit Hilfe der Hermite-Weber Differentialgleichung lassen sich unter dem Begriff Hermite-Weber Lösung alle Lösungen zusammenfassen, die sich aus Lösungen der Hermite-Weber Differentialgleichung unter sukzessiver Anwendung von Bäcklundtransformationen ergeben. Es gelingt die Zählfunktion signifikant zu reduzieren, so dass man nach endlich vielen Anwendungen geeigneter Bäcklundtransformationen in einer Hermite-Weber Differentialgleichung landet. Da dies für alle subnormalen Lösungen gelingt, folgt als Hauptresultat, dass jede subnormale Lösung der vierten Painlevéschen Differentialgleichung eine Hermite-Weber Lösung ist.
Vortragende(r)
Christopher Classen
Herkunft der/des Vortragenden
Dortmund
Weiterführende Informationen

Weiterführende Informationen finden Sie HIER. Achtung hierbei kann es sich um eine externe Verlinkung handeln. Trotz sorgfältiger Prüfung übernimmt die Fakultät keinerlei Verantwortung für externe Inhalte!