Veranstaltungen
Veranstaltungen der Fakultät für Mathematik
Non-negative Martingale Solutions to the Stochastic Thin-Film Equation with Nonlinear Gradient Noise
Termin
20.09.2022, 13:45 Uhr -
Veranstaltungsort
SRG1 Raum 2.008
Abstract
We prove the existence of non-negative martingale solutions to
a class of stochastic degenerate-parabolic fourth-order PDEs arising in
surface-tension driven thin-film flow influenced by thermal noise. The
construction applies to a range of mobilites including the cubic one
which occurs under the assumption of a no-slip condition at the
liquid-solid interface. Since their introduction more than 15 years ago,
by Davidovitch, Moro, and Stone and by Grün, Mecke, and Rauscher, the
existence of solutions to stochastic thin-film equations for cubic
mobilities has been an open problem, even in the case of sufficiently
regular noise. Our proof of global-in-time solutions relies on a careful
combination of entropy and energy estimates in conjunction with a
tailor-made approximation procedure to control the formation of shocks
caused by the nonlinear stochastic scalar conservation law structure of
the noise.
The talk is based on joint work with Konstantinos Dareiotis (University
of Leeds), Benjamin Gess (Bielefeld University/MPI Leipzig), and Günther
Grün (University of Erlangen-Nuremberg)
Hinweis
Der Vortrag findet im 3city Seminar statt.
Vortragende(r)
Manuel Gnann
Herkunft der/des Vortragenden
TU Delft
Weiterführende Informationen
Weiterführende Informationen finden Sie HIER. Achtung hierbei kann es sich um eine externe Verlinkung handeln. Trotz sorgfältiger Prüfung übernimmt die Fakultät keinerlei Verantwortung für externe Inhalte!