Veranstaltungen 

Veranstaltungen der Fakultät für Mathematik

Non-negative Martingale Solutions to the Stochastic Thin-Film Equation with Nonlinear Gradient Noise

Termin

20.09.2022, 13:45 Uhr -

Veranstaltungsort
SRG1 Raum 2.008
Abstract
We prove the existence of non-negative martingale solutions to a class of stochastic degenerate-parabolic fourth-order PDEs arising in surface-tension driven thin-film flow influenced by thermal noise. The construction applies to a range of mobilites including the cubic one which occurs under the assumption of a no-slip condition at the liquid-solid interface. Since their introduction more than 15 years ago, by Davidovitch, Moro, and Stone and by Grün, Mecke, and Rauscher, the existence of solutions to stochastic thin-film equations for cubic mobilities has been an open problem, even in the case of sufficiently regular noise. Our proof of global-in-time solutions relies on a careful combination of entropy and energy estimates in conjunction with a tailor-made approximation procedure to control the formation of shocks caused by the nonlinear stochastic scalar conservation law structure of the noise. The talk is based on joint work with Konstantinos Dareiotis (University of Leeds), Benjamin Gess (Bielefeld University/MPI Leipzig), and Günther Grün (University of Erlangen-Nuremberg)
Hinweis
Der Vortrag findet im 3city Seminar statt.
Vortragende(r)
Manuel Gnann
Herkunft der/des Vortragenden
TU Delft
Weiterführende Informationen

Weiterführende Informationen finden Sie HIER. Achtung hierbei kann es sich um eine externe Verlinkung handeln. Trotz sorgfältiger Prüfung übernimmt die Fakultät keinerlei Verantwortung für externe Inhalte!